
Almost Tag-Free Garbage Collection for Strongly-Typed

Object-Oriented Languages

Fah-Chun Cheong

Department of Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI 48109-2122

(313) 763-2153

fcc@eecs.umich.edu

March 25, 1992

Abstract

Given the heavy use of dynamic storage under

the object-oriented paradigm, e�cient storage recla-

mation techniques have become especially impor-

tant. Previously, Appel [2] and Goldberg [12]

have discussed compiler-supported tag-free collection

schemes for strongly typed languages. This paper

presents a more e�cient, almost tag-free garbage col-

lection scheme that takes into consideration the spe-

cial requirements of object-oriented languages that

are strongly typed. Our method requires only a sin-

gle pass over the run-time procedure-call stack during

garbage collection, as opposed to two passes for Gold-

berg's scheme and a linear number of passes in the

worst case for Appel's.

Furthermore, in the case of distributed languages

where it is practically impossible to unwind the stack

all the way to its origin while trying to identify generic

variables, the methods of Appel and Goldberg are not

applicable. Our scheme uses a generic tag vector to

help identify generic variables and does not require

any stack searches beyond the current frame. We

have incorporated our proposed scheme into a newly

designed distributed object-oriented language Oasis.

This paper includes a discussion of our practical im-

plementation experience in the Oasis context.

1 Introduction

Languages like Smalltalk [18], Ei�el [14], Common-

Lisp [16], and ML [15] have traditionally required

each piece of data be tagged with type information.

Such tags are used for the dual purpose of dynamic

type-checking and garbage collection. Such tags not

only exact a toll in the form of space and time over-

head during the garbage collection process itself but

also during the entire program execution.

As discussed in the papers of Appel [2] and more

recently Goldberg [12], run-time tags are not needed

at all when garbage collecting for strongly typed lan-

guages. They have also shown how their schemes

could handle polymorphism in ML [15]. Both of these

methods are based upon a much earlier idea �rst de-

scribed in the Algol-68 literature, which is simply

that when compiling a program, the compiler knows

about the type of each piece of data that it encounters

and could thus generate the necessary code speci�c

to objects of that type to support run-time garbage

collection.

In this paper we shall not discuss tagged garbage

collection, for which Cohen [8] has already provided

an excellent survey. We will, however, brie
y sum-

marize the advantages of a tag-free garbage collection

scheme over the tagged methods:

� A tag-free scheme allows for more e�cient use

of heap space. Without the tag bits, a larger

range of integers or
oating point numbers can

be represented. Furthermore, addressable data

objects do not need to be word aligned or be

allocated in di�erent areas of the heap, as would

have been the case if tags were to occupy the low

or high order bits of a word, respectively.

� Manipulation of tagged data, eg. removal of tag

bits from integer data before arithmetic opera-

tions followed by subsequent re-attachment prior

to storage, involves considerable run-time over-

head.

� A tag-free scheme allows for more accurate

recognition of live data and garbage as the com-

piler can, to a certain extent, determine whether

1

a local variable is live or dead at a certain point

in the program and can thus generate code to

guide the collection process.

The earliest example of a tag-free collection scheme

can be traced back to the very �rst implementations

of Lisp, which allocate data objects in di�erent areas

of the heap based upon types. The high order bits of

an address therefore implicitly encode the type infor-

mation of the addressed data object. However, this

simple scheme requires indirection to access integers

and
oating points and cannot be easily extended

to handle user-de�ned data types. In the context

of Algol-68, Branquart and Lewi [5] have discussed

two tag-free schemes: an interpretive method and a

compiled method. Also, a similar scheme for Pascal

was described by Britton [6].

More recently, various garbage collectors have been

proposed for the C++ programming language [17].

These include Bartlett's mostly copying collector [3]

and Detlefs's generalization of Bartlett's work [9],

Boehm's conservative collector [4], Kennedy's refer-

ence counting collector [13], Edelson's copying col-

lector [11], and Edelson's mark-and-sweep collector

[10]. The primary problem these collectors solve is

the identi�cation of pointers on the runtime stack as

well as in global data space. Edelson [10] provides a

fairly detailed discussion on both the advantages and

disadvantages of these collectors.

Our work is more closely along the line of Appel's

[2] and Goldberg's [12]. Appel's scheme [2] is an ex-

tension of previous methods and supports polymor-

phically typed languages like ML. He recognized that

the return address stored in each activation record

can lead to type information for local variables. How-

ever, Appel's scheme is mostly concerned with �nd-

ing which procedure is associated with each activa-

tion record and does not take into account the cur-

rent execution point in the procedure. Goldberg's

scheme [12] is an improvement over Appel's in that

it is more �ne grained and could distinguish between

di�erent execution points within a procedure using

information gleaned from a compile-time live-variable

analysis. By associating di�erent compiled garbage

collection routines with various points in each proce-

dure, Goldberg's scheme optimizes the collection pro-

cess accordingly. Goldberg has also pointed out cer-

tain shortcomings in Appel's method, which assigns

a �xed descriptor to each procedure de�nition and

therefore lacks the �ner granularity needed to deal

with local variable initializations at various points in

the procedure.

Goldberg's method is potentially faster than Ap-

pel's. Unlike Appel's interpretive scheme, Goldberg's

method is compiled. Although it may require a larger

code size to support garbage collection, it will actu-

ally run faster. Furthermore, in the case of poly-

morphic languages, Goldberg's method requires that

the stack be traversed at most twice (linear time), an

improvement over Appel's method which requires the

number of stack traversals be proportional to the size

of the stack in the worst case (quadratic time).

For the rest of this paper, we shall describe a

new, almost tag-free collection scheme based upon

the work of Appel and Goldberg, which we have

modi�ed for use with strongly-typed object-oriented

languages. Our method, like that of Appel and

Goldberg, relies on compiler generated informa-

tion to guide the collection process. The di�er-

ence is that ours is speci�cally tailored for han-

dling generic classes and methods under the object-

oriented paradigm. We recognized that generic meth-

ods within a generic class exhibit a more structured

form of polymorphism compared to ML's functions.

By trading o� a little run-time space when dealing

with generic classes, our scheme runs faster and is

easier to implement than its predecessors.

2 Method

Like Appel's and Goldberg's methods, our tag-free

scheme operates in the general framework of a basic

two-space copying collector. We have not yet inves-

tigated the compatibility of our scheme with respect

to generational or parallel garbage collection.

When garbage collection is invoked, it traces the

global variables and traverses the stack area look-

ing for references into the heap. It uses compiler

generated descriptors to identify atoms, pointers and

generics in the relevant areas, prior to tracing and

collecting all the reacheable data. The descriptors

are static information generated at compile-time, and

does not involve any run-time manipulation overhead

other than that of the garbage collection itself. Our

scheme is tag-free in this regard. However, in the

treatment of generic variables, we have resorted to

using tag vectors to identify their actual types. Hence

our garbage collection method is almost, although not

entirely, tag-free.

From an object-oriented viewpoint, ML's notion of

function polymorphism is similar to a more struc-

tured form of genericity pertaining to classes and

methods (not to be confused with the similar notion

of method polymorphism related to dynamic method

binding). The generic variables occurring in methods

are associated with type variables that are bound uni-

versally within the scope of a class template, to which

these methods are attached. In other words, generic

2

type variables are naturally associated with the en-

closing class template, rather than with the individ-

ual methods themselves. This is a direct consequence

of object-orientation as classes have become the focus

of attention and have an existence at the global level,

whereas methods have become con�ned to within the

boundaries of a class.

A logical place to store the generic tag information

would be in the object itself, i.e. as a vector embedded

just below the object header but above the attributes.

Our scheme uses the tag vector to determine whether

a generic variable occurring in a method attached to

this class is a pointer reference. It should be noted

that the tag vector only appears in objects instanti-

ated from generic classes. Ordinary, non-generic ob-

jects are fully tag-free. Looking up the tag vector is a

constant-time operation and does not involve a stack

search as in the case of Appel's or Goldberg's meth-

ods. This allows our method to be used in situations

where it is practically impossible to unwind the stack

in search of tag information for generic variables, eg.

in a distributed environment. Under our almost tag-

free scheme the stack is traversed exactly once during

garbage collection.

3 Implementation

In this section, we shall discuss the implementation

of our scheme in the context of a strongly typed, dis-

tributed object-oriented programming language Oa-

sis [7], which has been designed and implemented

by the author at the University of Michigan. Oasis

is an object-agent speci�cation and implementation

system that embodies an object/agent distributed

programming model. The system includes an inter-

active shell, a front-end compiler, a code transport

and distribution mechanism, several back-end trans-

lators, and a run-time system that handles, among

other things, remote procedure calls, multiple-thread

scheduling, and garbage collection. We have success-

fully incorporated our proposed garbage collection

scheme into the implementation of Oasis and will now

discuss our experience.

Under the Oasis abstract machine model, the heap

space is managed by two pointer registers: the heap

pointer and the break pointer. The heap pointer

points at the next free heap location while the break

pointer points at one word beyond the end of the

current heap semi-space. Upon entering a method, a

comparison check is made between the heap pointer

and the break pointer if the compiler detects any po-

tential use of dynamic memory within the method.

Similarly, upon exiting a method, a comparison check

is made if any of the output parameters needs to be

constructed from dynamic memory. Garbage collec-

tion is promptly initiated if the current semi-space

is found to be exhausted, or exceeded by not more

than a safe margin determinable at compile time.

The compiler does not generate any comparison check

code if there is no possibility of using dynamic mem-

ory within the method.

This safe margin computation is possible at

compile-time for the following reasons.

� Firstly, Oasis enforces the rule that the sizes

of all dynamic data objects be determinable

at compile-time. For example, all arrays are

created with dimensions and sizes that can

be deduced at compile-time (currently through

constant-folding).

� Secondly, Oasis uses recursion, with last-call op-

timization, as the sole means of control
ow.

There is no unbounded period of time where an

Oasis program could run without either entering

a method or exiting from one.

Thus by optionally inserting pointer check code

at method entries and exits, the compiler guaran-

tees that the heap semi-space will be checked at

regular intervals, between any two of which there

could be at most N allocated heap cells, where N is

the much sought-after compile-time safety margin.

1

There are two reasons for our decision to associate

pointer checks with method entries and exits rather

than with heap allocations.

� Firstly, lumping the checks into one place at the

start of each method and another at the end re-

quires less overhead than the comparable scheme

of checking at each heap allocation, of which

there could be several within a method.

� Secondly, the code generated by the Oasis trans-

lator back-end is such that the top portion of the

stack is always kept in machine registers for fast

access. It is only during method entry and exit

that the state of the stack is fully synchronized

with the registers. If garbage collection is trig-

gered as a result of heap over
ow in the middle

of evaluating an expression, there could be no

way of knowing the precise state of the stack at

that point in time.

1

In practice, we will simply let the user con�gure Oasis to

allow a reasonable margin. The margin computation, although

theoretically feasible, is potentially expensive and non-trivial

to implement.

3

Parent

Stack Pointer

Current

Activation

Record

Parent

Activation

Record

High Stack

Memory

Low Stack

Memory

Current

Stack Pointer

Success Link (L1)

Failure Link (L2)

Call, Jump, Invoke

Push Parameter 1

Push Parameter 2

Push Parameter k-1

Push Target Object

L1:

L2:

Continuation Code

Alternative Code

Tag Vector

Attribute 1

Attribute 2

Attribute n

...

...

Object in Heap

Program Code

Target Object

Return Address

Local Variables

Parameter 1

Parameter 2

Parameter k-1

...

Target Object

Return Address

Local Variables

Parameter 1

Parameter 2

Parameter k’-1

...

Class ID

Frame Descriptor

Figure 1: Organization of code, stacks, and heap that

supports almost tag-free collection

3.1 Stack Traversal

In this section we shall be concerned with the orga-

nization and use of the underlying data structures

needed to support stack traversal and pointer identi-

�cation during garbage collection. Figure 1 is a snap-

shot taken at run-time that illustrates the layout of

the code, heap and stacks of an Oasis agent, imple-

mented as a Unix process, immediately after the in-

vocation of a method. The multiple stacks re
ect the

multiple concurrent threads within an Oasis agent.

At this time, the active thread visible in the fore-

ground has successully pushed the call parameters

onto the stack in reverse order, recorded the target

object pointer, saved the return address and estab-

lished an activation record for this call. The shaded

regions highlight the data structures required to col-

lect for the parent activation record, assuming that

the current activation record has been taken care of

in a previous collection step.

Our approach is to compile the o�set information

needed for tracing local variables and parameters into

a frame descriptor to be placed in the code section at

a �xed o�set below each call, jump or invoke instruc-

tion. This is to ensure that the return address can

be used to locate the frame descriptor during garbage

collection. Figure 2 illustrates the layout of the frame

descriptor and how its contents are used to access in-

formation in both the stack and the heap.

A frame descriptor is composed of two sub-tables:

(1) an array of indices into the activation record to

access pointer-type variables and parameters (eg. ob-

jects, lists or arrays); and (2) an array of index-pairs

of the form hj; gi, where j is used to index into the

activation record to access generic variables and pa-

rameters, and g is used to index into the tag vector

of the target object to �nd out the actual type of

that particular generic variable or parameter. Since

the sub-tables hold only non-negative indices, we can

mark the end of each of the two sub-tables with a

negative sentinel.

Separating the two sub-tables is an o�set S,

negated for use as an end-marker. It indexes into

the target object slot of the activation record cur-

rently under collection. The garbage collection pro-

cess needs the tag information in the tag vector lo-

cated at the target object to determine the actual

type of any generic variables or parameters in the ac-

tivation record. Also, since the return address slot is

located adjacent to the target object slot, the o�set

(S � 1) can be further used to locate the return ad-

dress, and hence the frame descriptor for the parent

activation record, for use in the next iteration.

We have adopted a virtual frame pointer technique

for Oasis' stack discipline in order to speed up method

call and return. This explains the absence of tradi-

tional dynamic links. The stack pointer is updated by

an o�set computed at compile-time depending upon

the number of local variables and parameters in the

activation record. This has less overhead than the

comparable scheme of establishing a dynamic link af-

ter each call and subsequently using it to locate its

parent frame before returning. However, without the

dynamic links, the garbage collection process will �nd

it impossible to traverse the stack frames in order to

trace reacheable data objects. The o�set information

that the garbage collection process requires to skip

from frame to frame has been hard-coded into the

program and cannot be easily retrieved. Our solu-

tion is to add this compile-time o�set (S +K) to the

frame descriptor so that the garbage collection pro-

cess knows how to update the stack pointer to point

at the parent frame after collecting for the current

frame.

Observe that the frame descriptor required to col-

lect for the parent frame is accessed through the re-

4

High Stack

Memory

Low Stack

Memory

Frame

Descri-

ptor

Attributes

Target Object

Return Address

S-1 Variables

K-1 Parameters

SP’

Target Object

Return Address

S’-1 Variables

K’-1 Parameters

SP’+(S’+K’)

SP’+S’

[SP+S]+g

- (S’+K’)

- S’

SP

Indices, j, for

Pointer-Type

Variables and

Parameters

Index-Pairs, <j, g>,

for Generic

Variables and

Parameters

Tag Vector

SP’+j

SP’+j

Class ID

Figure 2: Identifying pointers using frame descriptor

turn address slot found in the child frame, as is the

case for Goldberg's, and not in the parent frame it-

self. This setup provides us with the �ner granularity

required to discriminate between di�erent execution

points within the parent method and allows us to

optimize the collection process accordingly using a

live-variable analysis [1].

With all the supporting data structures in place,

it is relatively easy to envision how the stack is tra-

versed during garbage collection. When garbage col-

lection is �rst started, it collects for the frame at the

top of the stack associated with the current active

thread. Next, it retrieves the frame descriptor via

the return address pointer, updates the stack pointer

to its parent frame, and continues the collection pro-

cess on its parent using the information found in the

frame descriptor. This inductive step is repeated un-

til the base of the stack is reached. The collection

process then continues on another stack associated

with a di�erent thread, and this repeats until all the

stacks have been traversed. At this point, all the

reacheable data will have been copied from the old

semi-space into a compact new semi-space and the

garbage collection terminates successfully.

Tag Vector

Attribute 1

Attribute 2

Attribute n

...

Object in Heap

Class ID = X

HP+g

Indices, j, for

Atomic

Variables and

Parameters

Index-Pairs, <j, g>,

for Generic

Variables and

Parameters

Indices, j, for

Pointer-Type

Variables and

Parameters

HP+j

HP

Class X Descriptor

Class Descriptor Table

.

.

.

CT

CT+X

.

.

Figure 3: Collecting objects using class descriptor

3.2 Heap Traversal

We have thus far been concerned mainlywith travers-

ing the stack and identifying pointer references in the

activation records. We will now discuss how these

pointers to objects in the heap can be traced af-

ter they have been identi�ed. Figure 3 illustrates

the global data structures required to support heap

traversal. These data structures are compiled into

the program code section and require no run-time

overhead for their manipulation. The class descriptor

table is indexed by the class identi�er that appears

in the header word of an Oasis object. This leads

directly to the class descriptor for objects which be-

long to that particular class. The layout of the class

descriptor is similar to that of the frame descriptor.

The major di�erence being the addition of a sub-

table containing indices into atomic attributes (eg.

integers, characters and
oating-points) of an object.

In the case of frame descriptors, only pointers and

generics are of interest since atoms stay on the stack

and need not be copied. This is not true for class

descriptors as heap objects have to be copied in its

entirety from one semi-space to another during the

collection process.

Our implementation uses breadth-dirst search to

trace and copy heap objects during the collection pro-

cess. The queue is implemented by using the other

5

end of the newly allocated semi-space and thus does

not take up extra space.

4 Examples

In this section we shall present two versions, one

generic and one non-generic, of a list manager class

with the intent of illustrating the �ner points of our

garbage collection scheme.

4.1 Generic Class

Consider the following class de�nition in Oasis, which

basically de�nes a generic class called list manager

parameterized by the type variable $a. It has an at-

tached method append similarly parameterized:

class list_manager <$a> {

method:

append ($a* List1, List2, # 2 inputs

?Result). # 1 output

}

list_manager {

append ([], Ys', Ys). # base case

append ([X'|Xs'], Ys', [X|Zs]) :-

append (Xs, Ys, Zs'). # induction

}

In Oasis, a single quote after a variable name de-

notes its lvalue. For the above class de�nition, the

Oasis compiler generates the following abstract ma-

chine code fragment, where the class list manager

has been assigned an o�set of ten:

1 .data ;class descriptor

2 C10: .word 1 ;generic tag $<a>

3 .word -1 ;1st end marker

4 .word -1 ;2nd end marker

5 .word -1 ;3rd end marker

6 .text ;start append method

7 L10_1:entr 3,4 ;2 inputs, 3 locals

8 lods 1,5 ;load par #1

9 bnez 1,L2 ;not nil => goto L3

10 lods 1,6 ;load Ys as out #1

11 retn 3,4,1 ;successful return

12 L2: lods 1,5 ;load par #1

13 beqz 1,L1 ;nil => goto L1

14 lodm 2,1,1 ;load car of par #1

15 move 2,0 ;assign to X

16 lodm 2,1,2 ;load cdr of par #1

17 move 2,1 ;assign to Xs

18 lods 1,6 ;load Ys

19 lods 2,1 ;load Xs

20 lods 3,4 ;load target

21 call 3,1,L10_1 ;recursive call

22 .addr L3 ;success link

23 .addr L1 ;failure link

High Stack

Memory

Low Stack

Memory

L3

L1

L3:

L1:

move 1,2

fail 3,4

...

Program Code

Target Object

Return Address

Par #1

Par #2 (Ys)

list_manager

Var #3 (Zs)

Var #1 (X)

Var #2 (Xs)

Target Object

Return Address

Par #1

Par #2 (Ys")

Var #3 (Zs")

Var #1 (X")

Var #2 (Xs")

$a (0 or 1)

chek L4

...

- 4 (to target)

 0 (index to X)

 1 (index to $a)

- 7 (to parent)

call 3,1,L10_1
lods 3,4
lods 2,1
lods 1,6

SP+4

SP"

SP

SP+7

[SP+4]+1

Figure 4: Garbage collecting for the generic append

method

24 .word -4 ;target obj offset

25 .word 0 ;X is generic var

26 .word 1 ;index to tag vector

27 .word -7 ;parent frame offset

28 L3: move 1,2 ;assign out #1 to Zs

29 chek L4 ;check heap overflow

30 coll L5 ;collect garbage

31 .data ;frame descriptor

32 L5: .word 2 ;Zs needs copying

33 .word -4 ;target obj offset

34 .word 0 ;X is generic var

35 .word 1 ;index to tag vector

36 .word -7 ;parent frame offset

37 .text ;text section again

38 L4: brek 1,3 ;allocate cons cell

39 lods 2,4 ;load target

40 stom 1,0,2,1 ;cons cell header

41 stos 1,1,0 ;car = X

42 stos 1,2,2 ;cdr = Zs

43 retr 3,4,1 ;successful return

44 L1: fail 3,4 ;failed return

Graphically, this is illustrated in Figure 4. Ob-

serve that after the recursive call (at line 21) but

before its return, parameter #1, Xs and Ys are al-

ready dead, while Zs is not yet initialized. Therefore,

only X remains live and its generic type $a will deter-

mine whether it needs to be traced during collection

6

depending on whether it is a pointer type or not.

4.2 Non-generic Class

If we use a simpler, non-generic class speci�cation

which restricts the append routine to handling integer

lists only (but retains the basic de�nition of append),

as in:

class list_manager {

method:

append (int* List1, List2, ?Result).

}

list_manager {

append ([], Ys', Ys).

append ([X'|Xs'], Ys', [X|Zs]) :-

append (Xs, Ys, Zs').

}

then the Oasis compiler generates simpler class and

frame descriptors instead:

1 .data ;class descriptor

2 C10: .word -1 ;1st end marker

3 .word -1 ;2nd end marker

4 .word -1 ;3rd end marker

5 .text ;start append method

... ;...

20 call 3,1,L10_1 ;recursive call

21 .addr L3 ;success link

22 .addr L1 ;failure link

23 .word -4 ;target obj offset

24 .word -7 ;parent frame offset

25 L3: move 1,2 ;assign out #1 to Zs

26 chek L4 ;check heap overflow

27 coll L5 ;collect garbage

28 .data ;switch to data

29 L5: .word 2 ;Zs needs copying

30 .word -4 ;target obj offset

31 .word -7 ;parent frame offset

... ;...

Observe that what used to be the tag vector (for

generic variable $a) is no longer present in the non-

generic version of list manager, and thus the simpler

class descriptor. The frame descriptor is also simpler

but for a di�erent reason, i.e. X is now an integer and

does not need to be traced during garbage collection.

5 Discussion

We have initially contemplated using a compiled

scheme not unlike that of Goldberg's, except for the

changes made to accomodate object-orientation. But

given the complexity of garbage collection, the code

space overhead of a compiled scheme is expected to be

quite large. A compiled method is also much more

di�cult to implement than our current interpretive

scheme, although it could potentially be much faster.

In any case, our decision to go along with the current

interpretive scheme yields an important fringe ben-

e�t, i.e. class descriptors in Oasis can be reused for

the purpose of marshaling and unmarshaling of data

during remote procedure calls and replies.

Our scheme represents both the frame descriptor

and the class descriptor as a composition of sub-

tables, each of which holds index information into

relevant areas inside the stack frame and object in-

stance. An alternative design would have been to

represent the descriptors as multi-bit vectors mirror-

ing the layout of local variables and parameters in

the stack frame, or attributes in the object. The

multiple bits would then encode the associated tag

information for the local variables, parameters or ob-

ject attributes. We consider this alternative design

unattractive as it introduces an unnecessary level of

interpretation to the collection process, i.e. decod-

ing of the tag information. As far as garbage collec-

tion is concerned, there are only three kinds of tags

worth di�erentiating: atoms, pointers, and generics.

Therefore, by grouping indices for accessing data of

the same type into one sub-table, our scheme dis-

penses with run-time tag decoding altogether (except

for generic tags whose values can only be known at

run-time when classes become instantiated).

There is a lot of room for improvement in our cur-

rent representation of the generic tag vector. We are

using an array of 32-bit words to represent what is es-

sentially a bit vector, i.e. one full 32-bit word for each

single bit. At present, we are constrained by the ex-

pressiveness of the Oasis abstract machine language,

which handles all data as words and has no notion of

bits. In the future, as bit-shu�ing instructions are

added, we shall begin to represent the tag vectors

as true bit vectors. However, there is a space-time

trade-o� here. At least on stock hardware, indexing,

reading and writing a word is faster than the corre-

sponding actions on a single bit within a word, since

extra instructions are needed for shu�ing or masking

remaining bits in the word. As a result, generic class

instantiations might just be a little slower.

6 Conclusion

In this paper we have introduced an almost tag-free

garbage collection scheme based upon the methods

described by Appel [2] and Goldberg [12], which we

have modi�ed for use with strongly typed object-

oriented languages. Our work is directly applicable to

existing object-oriented languages like C++ and Eif-

7

fel, although in this paper we have not addressed such

language speci�c issues. Our scheme is both simpler

and more e�cient compared with its predecessors,

requiring only a single pass over the procedure-call

stack. Furthermore, our scheme does not require un-

winding of the stack in order to identify the actual

types of generic variables, and is thus suitable for use

in a distributed setting.

This paper also discusses our experience with im-

plementing the proposed scheme in the context of a

particular distributed object-oriented language Oa-

sis, whose design and construction has been success-

fully completed by the author at the University of

Michigan. We have shown a detailed layout of the

data structures required to support an interpretive

tag-free collection scheme, which is absent from pre-

vious work. Our proposed garbage collection scheme

has been incorporated into the Oasis compiler, code-

generator and run-time system. In the near future,

we shall be studying the comparative performances of

our scheme with respect to other approaches towards

garbage collection. In the long run, we are inter-

ested in �nding out how our method can be modi�ed

or extended to work in a generational or concurrent

manner.

7 Acknowledgements

The author would like to thank his advisor Quentin

Stout, and members of his dissertation committee,

Todd Knoblock, Trevor Mudge and Atul Prakash, for

their comments and suggestions on early drafts of this

paper.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compil-

ers: Principles, techniques and Tools. Addison-

Wesley, 1986.

[2] A. W. Appel. Runtime Tags Aren't Neces-

sary. Lisp and Symbolic Computation, 2:153{

162, 1989.

[3] J. F. Bartlett. Mostly Copying Garbage Collec-

tor. Technical Report TN-12, DEC Western Re-

search Laboratory, Palo Alto, California, 1989.

[4] H.-J. Boehm, A. J. Demers, and S. Shenker.

Mostly Parallel Garbage Collection. In SIG-

PLAN '91 Conference on Programming Lan-

guage Design and Implementation, pages 157{

164, Toronto, Canada, June 1991.

[5] P. Branquart and J. Lewi. A Scheme of Stor-

age Allocation and Garbage Collection for Algol-

68. In Algol-68 Implementation. North-Holland,

1970.

[6] D. E. Britton. Heap Storage Management for the

Programming Language Pascal. Master's thesis,

The University of Arizona, 1975.

[7] F.-C. Cheong. A High-Performance Ob-

ject/Agent Oriented Programming Language and

System for Heterogeneous Distributed Comput-

ing. PhD thesis, University of Michigan, 1992.

In Preparation.

[8] J. Cohen. Garbage Collection of Linked

Data Structures. ACM Computing Surveys,

13(3):341{367, Sept. 1981.

[9] D. Detlefs. Concurrent Garbage Collection for

C++. Technical Report 90-119, CMU Computer

Science, 1990.

[10] D. Edelson. A Mark-and-Sweep Collector for

C++. In Conference Record of 19th Annual

ACM Symposium on Principles of Programming

Language, pages 51{58, 1992.

[11] D. Edelson and I. Pohl. A Copying Collector for

C++. In Usenix C++ Conference Proceedings,

pages 85{102, 1991.

[12] B. Goldberg. Tag-Free Garbage Collection for

Strongly Typed Programming Languages. In

SIGPLAN '91 Conference on Programming Lan-

guage Design and Implementation, pages 165{

176, Toronto, Canada, June 1991.

[13] B. Kennedy. The Features of Object-Oriented

Abstract Type Hierarchy (OATH). In Usenix

C++ Conference Proceedings, pages 41{50,

1991.

[14] B. Meyer. Object-oriented Software Construc-

tion. Prentice Hall, 1988.

[15] R. Milner, M. Tofte, and R. Harper. The De�-

nition of Standard ML. MIT Press, 1990.

[16] G. L. J. Steele. Common Lisp: The Language.

Digital Press, Burlington, Mass, 1984.

[17] B. Stroustrup. The C++ Reference Manual.

Addison-Wesley, Reading, Mass, 2 edition, 1991.

[18] D. M. Ungar. The Design and Evaluation of a

High Performance Smalltalk System. MIT Press,

1986.

8

